Standardization within a Protocol Architecture

Standards and Protocol Layers

A protocol architecture, such as the TCP/IP architecture or OSI, provides a framework for standardization. Within the model, one or more protocol standards can be developed at each layer. The model defines in general terms the functions to be performed at that layer and facilitates the standards-making process in two ways:

• Because the functions of each layer are well defined, standards can be developed independently and simultaneously for each layer. This speed up the standards-making process.

• Because the boundaries between layers are well defined, changes in standards in one layer need not affect already existing software in another layer. This makes it easier to introduce new standards.

principle of information hiding is used: Lower layers are concerned with greater levels of detail; upper layers are independent of these details. Each layer provides services to the next higher layer and implements a protocol to the peer layer in other systems.

Three elements are key:

• **Protocol specification:** Two entities at the same layer in different systems cooperate and interact by means of a protocol. Because two different open systems are involved, the protocol must be specified precisely. This includes the format of the protocol data units exchanged, the semantics of all fields, and the allowable sequence of PDUs.

• Service definition: In addition to the protocol or protocols that operate at a given layer, standards are needed for the services that each layer provides to the next higher layer. Typically, the definition of services is equivalent to a functional description that defines what services are provided, but not how the services are to be provided.

• Addressing: Each layer provides services to entities at the next higher layer. These entities are referenced by means of a port, or service access point (SAP). Thus, a network service access point (NSAP) indicates a transport entity that is a user of the network service.

The need to provide a precise protocol specification for open systems is selfevident. The other two items listed warrant further comment. With respect to service definitions, the motivation for providing only a functional definition is as follows. First, the interaction between two adjacent layers takes place within the confines of a single open system and is not the concern of any other open system. Thus, as long as peer layers in different systems provide the same services to their next higher layers, the details of how the services are provided may differ from one system to another without loss of interoperability. Second, it will usually be the case that adjacent layers are implemented on the same processor. In that case, we would like to leave the system programmer free to exploit the hardware and operating system to provide an interface that is as efficient as possible.

With respect to addressing, the use of an address mechanism at each layer, implemented as a service access point, allows each layer to multiplex multiple users from the next higher layer. Multiplexing may not occur at each layer, but the model allows for that possibility